This film was soaked into a TiCl4 (20 mM in water) solution for 12 h. It was then washed with deionized water and ethanol, dried with air, and sintered again at 450°C for 30 min. In situ solvothermal growth of CuInS2 nanocrystals CIS #GSK2118436 clinical trial randurls[1|1|,|CHEM1|]# layer was in situ grown on nanoporous TiO2 films by a solvothermal process. In a typical process, thioacetamide (0.24 mmol, 0.02 M) was
added into a 12 mL ethanol solution containing InCl3 · 4H2O (0.01 M) and CuSO4 · 5H2O (0.01 M) under magnetic stirring, until a clear solution was formed. The resulting solution was transferred into a Teflon-lined stainless steel autoclave with 30-mL capacity. Subsequently, FTO/compact-TiO2/nanoporous-TiO2 film as the substrate was vertically immersed into the solution. Lastly, the autoclave was kept in a fan-forced
oven at 160°C for 12 Selleck Nirogacestat h. After air-cooling to room temperature, CIS film on non-conductive glass side was scraped off, while CIS film on nanoporous TiO2 film side was washed with deionized water and absolute ethanol successively, and dried in air. For comparison, the effects of InCl3 · 4H2O concentrations (0.01, 0.03, 0.1 M) on the morphologies CIS layer were investigated. The concentration ratio of InCl3 · 4H2O, CuSO4 · 5H2O, and thioacetamide was maintained constant (1:1:2) for all the cases. Fabrication of all-solid HSC The P3HT solution (10 mg/mL in 1,2-dichlorobenzene) was spin-coated onto TiO2/CIS with 3,000 rpm for 60 s. Then, in order to improve the contact between P3HT and gold, a PEDOT:PSS solution diluted with two volumes of methanol was introduced onto TiO2/CIS/P3HT layer by spin-coating at 2,000 rpm for 30 s [32]. In order to form a hybrid heterojunction,
the TiO2/CIS/P3HT/PEDOT:PSS layer was then annealed at 90°C for 30 min in a vacuum oven. Gold layer as the back contact was prepared by magnetron sputtering with a metal mask, giving an active area of 16 mm2 for each device. The resulting HSC has a structure of FTO/compact-TiO2/nanoporous-TiO2/CIS/P3HT/PEDOT:PSS/Au. Characterization and photoelectrical measurements The sizes and morphologies of the sample were investigated by field emission scanning electron microscopy Etofibrate (FE-SEM; S-4800, Hitachi, Chiyoda-ku, Japan). During SEM measurement, energy dispersive spectroscopy (EDS; Quantax 400, Bruker AXS, Inc., Madison, WI, USA) line scan was also performed to locate and determine the distribution of different layer in the composite film. The X-ray diffraction (XRD; D/max-g B, Rigaku, Shibuya-ku, Japan) measurement was carried out using a Cu Kα radiation source (λ = 1.5418 Å). An ultraviolet/visible (UV-vis) spectrophotometer (U-3010 spectrophotometer, Hitachi, Chiyoda-ku, Japan) was used to carry out the optical measurements.