[105] In support of this, both sKl and mKl were reduced 3 hours post reperfusion[102] and the administration of exogenous klotho reduced renal injury especially when given within 60 minutes of reperfusion.[102] Further transgenic overexpression of klotho conferred more resistance to ischaemia reperfusion injury compared with wild-type.[102] Therefore klotho deficiency as an early event in AKI and its potential role as apathogenic factor that exacerbates acute
kidney damage may make this renal-derived protein a highly promising candidate for both an early biomarker and therapeutic agent for AKI. Progression from AKI to CKD or end-stage kidney disease inevitably follows a common pathway, selleck compound characterized Ibrutinib research buy by progressive interstitial fibrosis.[111] Transforming growth factor-β1 (TGF-β1) is a key player in mesenchymal transition and has an important role in fibrosis.[109] In the UUO model TGF-β1 is elevated and correlates with the severity
of fibrosis following injury.[110] Administration of recombinant klotho was observed to inhibit TGF-β1 signalling by directly binding to its receptor, thereby inhibiting the binding of TGF-β1 and ultimately alleviating renal fibrosis.[109] In a murine model of folic acid nephropathy and with cell culture, Moreno et al. demonstrated klotho downregulation by inflammation through the tumour necrosis factor (TNF) family of cytokines in a nuclear factor-kappa B (NFκB)-dependent manner.[104] This reduced gene expression was demonstrated to be a result of histone deacetylation, with inhibition of Idelalisib in vivo this mechanism resulting in reversal of the effects of TNFα,[104] arguing again for a possible therapeutic role using sKl, not only as a novel AKI biomarker but as potential therapy in kidney injury. Angiotensin-II (AngII) is a well-recognized potent pro-inflammatory, pro-oxidant and pro-fibrotic
agent traditionally considered exclusively involved in blood pressure and electrolyte control that is upregulated in a variety of renal pathology.[112, 113] AngII blockade using angiotensin-converting enzyme inhibitors (ACE-i) and angiotensin (type-1) receptor blockers (ARB) have not only demonstrated the pleiotropic effects of AngII but blockade confers cardio-renal protection beyond that of blood pressure control.[113-115] In examining these mechanisms, Zhou et al. studied rat renal tubular epithelial cells (NRK-52E) treated with AngII, ACE-i and ARB, alone and in combination.[116] The authors determined that several markers of fibrosis and inflammation including TGF-β1, were upregulated as a result of treatment with AngII and downregulated when treated in combination with ACE-i and/or ARB. Concurrently, klotho mRNA and protein levels in the cells showed relative inverse regulation, suggesting potential mechanistic pathways of AngII-induced kidney damage and klotho protection.