It is possible that contigs within this Cfv unique 80 Kb suite of

It is possible that contigs within this Cfv unique 80 Kb suite of contigs represent a number of extrachromosomal DNA plasmids. A wider survey of C. fetus isolates and the presence of plasmids learn more (type IV secretion systems) and phage genes will assist to confirm our observations. This analysis has provided diagnostic markers to discriminate the Campylobacter subspecies Cfv and Cff, which can be investigated for more

general applicability for field use. Most of the Cfv assays based on the incomplete AZUL-94 genome sequence, showed amplification preference for Cfv biovar venerealis strains. The Cfv biovar intermedius strains were negative in all but one assay, which was otherwise positive for Cfv AZUL-94 Selleck PD173074 strain only. Curiously, one of the assays designed to Cfv AZUL-94 strain virB9 (type IV Secretion gene) did not amplify other Cfv biovar

venerealis isolates but did amplify biovar intermedius and the Cff strains tested here. However, as described above the Cff genome sequence (Strain 82–40) does not appear to have type IV secretion genes. A confounding factor in interpreting this data is that different Cff strains may also possess putative plasmid-borne genes and these may potentially be shared between subspecies and Cfv biovars. The Cfv AZUL-94 strain could also either consist of a mix of the 2 biovars or represent a novel strain of Cfv. However, assays based on putative plasmid-borne genes have previously demonstrated inconsistencies when applied for subspecies identification in some Talazoparib regions [19]. The parA (plasmid partitioning protein gene), [42] assay target is thought to be plasmid borne, however evidence for plasmids containing

parA in Cfv has not been confirmed to date [19, 42]. Very little research has been undertaken to compare the Cfv biovars and the diagnostic targets reported here now need to be further tested in multiple field strains to assess the stability of these markers and therefore the genomic regions in Cfv. However, the results presented do suggest that the Cfv research community could benefit from the generation of full genome sequence from both biovars as well as isolates from different geographical continents. Our results Bcl-w also demonstrated putative plasmid sequences are present in Cfv, absent in Cff, suggesting plasmid profiling and sequencing from C. fetus subspecies, biovars and strains will assist to confirm our findings. Conclusion Our assays have highlighted the complexity of virulence factor specificity within C. fetus subspecies and strains probably due to plasmid borne gene elements. We found that most genes important for interactions between a pathogen’s surface-exposed proteins and host cells that represent a pivotal step in pathogenesis and virulence were conserved in C. fetus.

Comments are closed.