The prevalence of G allele was significantly higher in subjects s

The prevalence of G allele was significantly higher in subjects showing hepatic steatosis who were Caucasian (0.43 versus 0.13; P = 3.6×10−4) and African American (0.50 versus 0.09; P = 0.012), but not in those who were Hispanic (0.47 versus 0.40; P = 0.52). Consistently, subjects carrying the G allele clearly Lumacaftor manufacturer showed a higher hepatic fat content than common allele homozygotes (Fig. 1). This difference was statistically significant in Caucasians and African Americans, but not in Hispanics, although a similar trend was observed in this group. This association was independent of the BMI z-score, visceral fat, and glucose tolerance in Caucasians (P = 0.0001) and in African Americans (P = 0.01). Carriers of the G allele, regardless of ethnicity,

did not show any clear significant difference in overall degree of adiposity, abdominal fat distribution, https://www.selleckchem.com/Proteasome.html and in the fasting lipid profile. Alanine and aspartate aminotransferases, which are markers of hepatic injury, tended to be higher in the

G carriers in each ethnic group; however, the difference was not significant because of the small sample size. The index of insulin sensitivity (WBISI) was also not different by genotype (Table 2). The lack of differences in insulin sensitivity was further confirmed by using the hyperinsulinemic clamp. Indeed, carriers of the G allele, despite having greater fat accumulation in the liver, did not manifest a greater peripheral insulin resistance (Fig. 2). There were no differences in hepatic insulin sensitivity and lipolysis between the CC and CG/GG carriers. Indeed, we found similar hepatic glucose production

rates as well as glycerol turnover HSP90 rates at baseline and during both steps of the clamps, in both the CC and CG/GG groups (Fig. 2). Of the 18 subjects undergoing the subcutaneous fat biopsy, 11 carried the minor allele (G). In particular one Caucasian, three African Americans, and three Hispanics showed the CC genotype; four Caucasians, four African Americans, and two Hispanics were heterozygotes; one Caucasian showed the GG genotype. As in the main group, the G carriers tended to show higher %HFF than the CC group (P = 0.05). Given the small sample size, the subjects were merged according to the genotype independently of the ethnicity in order to explore the association between PNPLA3 gene variant with the adipocyte size and gene expression. CG/GG carriers showed significantly higher percent of small cells (P = 0.005) as well as a trend for lower median adipocyte cell size than the CC group (P = 0.05; Fig. 3). Potential ethnic differences have been addressed by a within-ethnic-group permutation test; this is described in detail in the Supporting Information Material. The %HFF correlated positively with the percentage small cells (r = 0.50; P = 0.03). The expression of PNPLA3 and PNLPA2 in adipose tissue did not vary between genotypes (P = 0.7 and P = 0.1). LEP and SIRT1 gene expression was significantly lower in the CG/GG group (P = 0.037 and P = 0.

Comments are closed.