For other species, one strain of each was tested (see Additional

For other species, one strain of each was tested (see Additional file 2). The assay demonstrated that, in addition to part of the V. cholerae strains, as previously reported, amplicons of the expected size of at least several of the T3SS2 genes were obtained from all of the V. Thiazovivin purchase hollisae strains and some of the V. mimicus strains. However, none of the genes tested

in any of the remaining 29 species could be amplified (see Additional file 2). Among the 46 non-O1/non-O139 selleck chemicals llc V. cholerae strains isolated from patients (28 strains) or environments (18 strains), we obtained the amplicons of at least one gene encoding the apparatus protein of the T3SS2α genes from 10 strains (see below). In two V. cholerae strains, which constitute the PCR products of T3SS2β genes, at least six genes for the apparatus and two genes for the translocons could be amplified (see Additional file 2). We therefore concluded that the aforementioned 10 V. cholerae strains were T3SS2α-positive and the two were T3SS2β-positive. Of these 12 T3SS2-positive strains, only one, the V. cholerae strain RIMD2214415, which possesses T3SS2α genes, was isolated from the environment. Therefore, as far as we could determine in this study, T3SS2 genes of V. cholerae tend to be Anlotinib solubility dmso found in clinical strains rather than in environmental isolates. In all of the five V. hollisae strains tested, the amplicons for three genes of T3SS2α, vscN2, vscR2 and vscT2, were obtained with the PCR assay,

but no other T3SS2α genes or any T3SS2β genes could be amplified.

GNAT2 The PCR products for vscN2R2T2 could be partially sequenced, which confirmed that the amplicons that could be obtained are more closely related to the T3SS2α than to the T3SS2β genes (data not shown). The PCR products of the genes for T3SS2 were detected in nine of 15 clinical or environmental V. mimicus strains. The genes encoding the apparatus proteins of T3SS2, vscN2C2R2T2U2 and vcrD2, were amplified by PCR in all the T3SS2-positive V. mimicus strains, although the amplicons for the genes encoding effector proteins, i.e., vopCLP, could not be obtained in a few of these strains (see Additional file 2). Of the nine T3SS2-positive strains, at least six genes for the apparatus proteins and two genes for the translocons of T3SS2α genes could be amplified from eight strains, while PCR amplification led to the detection in a V. mimicus strain of the amplicons of the T3SS2β genes, i.e., six genes encoding the apparatus proteins vscN2C2R2T2U2 and vcrD2, two genes encoding the translocons vopB2D2, and two genes for the regulators vtrAB. In the other six V. mimicus strains, no amplicons of the genes for either type of T3SS2 could be obtained (see Additional file 2). Of the nine T3SS2-positive V. mimicus strains, eight were therefore identified as T3SS2α-positive, and one as T3SS2β-positive. These findings suggest that, in addition to their distribution in V. parahaemolyticus and V. cholerae strains, the genes for T3SS2 are found in V. hollisae and V.

Comments are closed.