Discussion In this paper we use morphology and sequence data from

Discussion In this paper we use morphology and sequence data from fresh collections and sequence data (types) downloaded from GenBank to detail the Botryosphaeriales, treating 15 type genera and describing two new genera and six new species from Thailand. Phylogenetic resolution of Botryosphaeriales The 28S rRNA gene (LSU) has been shown to be suitable for distinguishing many ascomycetes at the generic level due to its relatively conserved nature (Crous et al. 2006; Schoch et

al. this website 2006; Hibbett et al. 2007). By choosing comparisons of sequences of LSU, Crous et al. (2006) recognized ten lineages within the Botryosphaeriaceae and accepted several genera, including those genera with sexual and/or asexual morphs. Separate names were not introduced for morphs of the newly proposed genera when sexual and asexual morphs were known. With the addition of EF1-α and

β-tubulin genes, and molecular data being available for more botryosphaeriaceous taxa, it is now possible to use combined multi-gene data to resolve complex CHIR-99021 ic50 groups such as Diplodia/Lasiodiplodia, Phaeobotryon/Barriopsis and Dothiorella/Spencermartinsia which have yet to be resolved. In addition, new asexual genera and cryptic species have been introduced (Alves et al. 2008; Sakalidis et al. 2011). By combining EF1-α and β-tubulin genes with ITS, Phillips et al. (2005, 2008) reinstated the genus Neodeightonia in the Diplodia/Lasiodiplodia complex and also showed that the latter asexual genera are morphologically and phylogenetically distinct. ITS gene sequence data have been used

to distinguish the species within the genera of Botryosphaeriales (Denman et al. 2000, 2003; Denman et al. 2003; Alves et al. 2004; Barber et al. 2005). However, it has not been possible to apply ITS alone in resolving species in this study, because Botryosphaeriaceae Idoxuridine embodies species complexes. It is evident that at the generic level, the combined EF1-α and β-tubulin gene analysis is best for delimiting genera of Botryosphaeriaceae, as well as the species in several genera of Botryosphaeriales. It has also been recommended that the RPB2 gene should be considered in similar multi-combined genes analyses of genus and species levels of Botryosphaeriales (Pavlic et al. 2009a, b) and that some new approaches might be used for complex groups, such as Genealogical Sorting Index (GSI), which has been used to resolve the asexual morph of Neofusicoccum (Sakalidis et al. 2011). Maximum Parsimonious (MP), Randomized Axelerated Maximum Likelihood (RAxML) and Mr. Bayes are models for generating phylogenetic trees and were used in this study. Most phylograms were similar when using different models, however the bootstrap values differed. RAxML and Mr. Bayes have been shown to be suitable models for phylogeny at higher taxonomic levels (class, order and family) and large data analysis (Hibbett et al. 2007; Schoch et al. 2009a, b; Suetrong et al. 2009; Liu et al.

100 μL from each well were plated onto TS agar and incubated over

100 μL from each well were plated onto TS agar and incubated overnight at 37°C. For the invasion assay, the monolayer Selumetinib ic50 was washed three times with DPBS. Two millilitres of cell culture medium supplemented with 1% antibiotic/antimycotic solution and 100 μg/mL gentamicin (Gibco) were added to each well. The 6-well

plates were incubated for another 2 h at 37°C and 5% CO2 to kill extracellular and surface-adherent bacteria. Afterwards, the monolayers were washed three times with DPBS and bacteria were quantified as described for the adherence assay. Assays were performed in duplicate and repeated twice. For comparative reasons, isolate 21702 was used as an internal assay control in every assay. Antibiotic efficacy this website of the invasion assay was tested for all strains with concentrations of 107 CFU/mL in pure cell culture medium, confirming that no viable bacteria were present after 2 h incubation (data not shown). Mechanical stretch Cultures of EA.hy926 were subjected

to cyclic tension using a FlexCell vacuum system (FlexCell, Dunn Laboratories, Hillsborough, USA). Cells were cultured on BioFlex culture plates (FlexCell) coated with collagen I in a humidified atmosphere with 5% CO2 at 37°C for 72 h. Afterwards cultures were stretched by 10% with a frequency of 1 Hz in a square wave pattern for another 24 h. EA.hy926 from the same preparation and cultured without mechanical Rebamipide stretch were used as controls. Stretched cells and controls were infected immediately after completion of mechanical stretch as described above. Biofilm assay The biofilm assay used in this study was performed as described previously [30] with the following modifications: absorbance was measured using the GENios Plate Reader (Tecan Deutschland GmbH, Crailsheim, Germany) at 450 nm (total bacterial growth) and 550 nm (crystal violet (CV), biofilm formation). Each strain was assayed in quintuplicate. ECM assay

96 well microtiter plates were coated with 10 μg/mL fibrinogen (human plasma, Sigma). Microtiter plates precoated with collagen I, collagen II, collagen IV, fibronectin, laminin, tenascin and vitronectin were purchased from Chemicon (Millipore, Schwalbach, Germany). Wells coated with BSA were used as negative controls and values were subtracted. Late-log-phase cultures of bacteria were inoculated into 100 μL BHI medium (Oxoid) and incubated on pre-coated wells without agitation for 2 h at 37°C. Subsequently, wells were washed twice with DPBS and dried for 20 min at 60°C. In parallel, bacteria were plated onto BHI agar and incubated overnight at 37°C. Attached bacteria were stained with 100 μL of 0.4% CV at room temperature for 45 min. Wells were rinsed five times with PBS and air dried. CV was solubilized in 100 μL ethanol (99%), and the absorbance was measured at 550 nm. Each strain was assayed in quadruplicate for the different ECM proteins.

capsulatus SB1003

were carried out as previously describe

capsulatus SB1003

were carried out as previously described [6]. The resulting kanamycin and kanamycin/spectinomycin resistant strains (Additional file 1) were confirmed to contain the gene disruptions by PCR using the original amplification primers (Additional file 3) whereby replacement of the wild type gene by the disrupted version was indicated by amplification of a single product of the expected size. In trans complementation was performed using wild type genes with their native upstream sequences placed on the low copy, broad host range plasmid, pRK767 [49]. A wild type fragment of rbaV and rbaW was amplified using primers VcF and VW-R. Primers VcF and Anti-anti-R were used to amplify the wild type rbaV fragment. The rbaW Dorsomorphin in vivo complement sequence contained an in-frame deletion of the majority of rbaV, replacing bp 24 to bp 272 with a KpnI site. This was created by joining 2 fragments, amplified with VcF and VdR, and VdF and VW-R, via a primer-embedded KpnI site. The

complementation vectors (Additional file 2) were conjugated into R. capsulatus using E. coli S17-1 [50]. Gene transfer bioassays Gene transfer bioassays were used as previously described [6] to measure production and release of RcGTA particles. Stationary phase cultures were filtered using 0.45-μm PVDF syringe filters and filtrates assayed for RcGTA activity using the R. capsulatus puhA strain, DW5 [51], as Romidepsin solubility dmso the recipient cells. The samples were plated on YPS agar and incubated in anaerobic phototrophic conditions and colony numbers were counted after 48 hours. RcGTA activities in mutant strains were determined as ratios relative to SB1003 in 3 replicate experiments. Statistically significant differences in RcGTA activities were identified by one-way analysis of variance (ANOVA) in R [52]. Western blotting Western blots targeting the ~32 kDa RcGTA major capsid protein were performed on the same cultures used for RcGTA activity assays

as described previously [6]. Samples contained 5 μl of cells pelleted from cultures and re-suspended in an equal volume of TE buffer or 10 μl of the culture supernatants mixed with 3× SDS-PAGE sample buffer and heated for 5 minutes at 98°C. The proteins were Protirelin separated on a 10% SDS-PAGE gel and transferred to a nitrocellulose membrane by electro-blotting in transfer buffer [48 mM Tris Base, 39 mM glycine, 20% methanol (v/v)]. Total protein levels within supernatant and cell sample groups were verified to be approximately equivalent by staining the membranes with Ponceau-S. The membranes were rinsed and blocked with a 5% (w/v) skim milk solution in TBST [20 mM Tris, 137 mM NaCl, 0.1% Tween-20 (v/v); pH 7.5] and incubated overnight at 4°C with an anti-Rhodobacterales GTA major capsid protein primary antibody (Agrisera, Vännäs, Sweden) [53] as a 1:1000 dilution in TBST.

See also (Oostergetel et al 2007) for further images Size bar e

See also (Oostergetel et al. 2007) for further images. Size bar equals 25 nm Recently, cryo-electron microscopy was performed on intact chlorosomes of C. tepidum embedded in a thicker layer of vitreous ice to reveal the arrangement of BChl sheets in wild-type chlorosomes and in chlorosomes from the triple mutant bchQRU (Gomez Maqueo Chew et al. 2007), which contains a well-defined

>95% homogeneous BChl d (Oostergetel et al. 2007). End-on views of chlorosomes fixed in a vertical position gave see more a direct clue to the packing of the sheets. They show the presence of multi-lamellar tubules of variable diameter (10–30 nm) with some non-tubular locally curved lamellae in between (Fig. 3). In the bchQRU mutant, most chlorosomes contain two tubular domains, as can be deduced from the banding pattern of the 2-nm striations. Overall, the cryo-electron microscopy

data show that the C. tepidum chlorosomes comprise Selleck CH5424802 multi-lamellar tubular domains extending over most of the length of the chlorosome, embedded in a less well-ordered matrix of smaller curved lamellar domains. The notion of multi-walled cylinders is consistent with the results from both freeze-fracture experiments done several decades ago and the more recent cryo-EM observations. Molecular organization of chlorophylls In addition to the 2-nm lamellar structure, cryo-EM images of C. tepidum chlorosomes and their calculated diffraction patterns indicated the presence of a smaller spaced regular structure in the direction of the long axis (Fig. 4). In wild-type chlorosomes, a weak periodicity of 1.25 nm is present (red arrow in Fig. 4b), in the bchQRU mutant a relatively strong 0.83 nm regular structure is evident from the diffraction pattern (Fig. 4d) and also directly visible in the image (Fig. 4c, inset). These cryo-EM observations provide constraints filipin concerning possible packing modes of the BChl molecules in the multi-lamellar tubes. Fig. 4 Analysis of the interior of the chlorosome of Chlorobaculum tepidum. a Image of an unstained, ice-embedded chlorosome from the wild-type. b Calculated diffraction pattern from the image of frame a. A bright

but unsharp reflection spot (white arrow) indicates an average spacing between lamellae of 2.1 nm, which is also directly visible in the image of frame a. A sharp layer line at 1.25 nm (red arrow) indicates a specific internal repeating distance of 1.25 nm of the lamellae, caused by a specific packing of BChls. A thin but distinct reflection at 3.3 nm (green arrow) is assigned to a spacing of protein molecules of the baseplate. c Image of an unstained, ice-embedded chlorosome from the bclQRU mutant. d Calculated diffraction pattern from the image of c. The white and green arrows indicate structural elements as in the pattern of frame b. The sharp layer line (red arrow) now indicates a specific internal repeating distance of 0.83 nm, instead of 1.25 nm as in the wild-type.

The proportion of the Gfp strain and of total Asaia in the whole

The proportion of the Gfp strain and of total Asaia in the whole bacterial community of donor individuals were 0.7% and 5.8%, respectively Ku0059436 (Table 2). The Asaia to bacteria ratio (ABR) was similar to the value previously reported (4.9%) for populations of the symbiont in field-collected S. titanus [2]; the higher value found in this study could be attributed to the additional uptake of Gpf-tagged Asaia cells from the diets supplementing those naturally occurring in the insect. A further confirmation of colonization of the insect body by the Gfp-tagged

Asaia was obtained by FISH experiments, which highlighted the acquisition by the insect of the tagged strain in different organs, including salivary glands (Figure 3 A-C). The colonization of salivary glands indicates that Asaia can be released into the feeding medium, potentially allowing bacterial transfer to other individuals. Figure 1 Gfp-Asaia infection rates and density within infected samples. White columns represent S. titanus individuals, and grey columns represent diets. The “donors” columns refer to the average values of donor insects in all of the trials. “24h”, “48h”, “72h”, and “96h” indicate the time of exposure to co-feeding or the time of incubation after mating with infected individuals. The “control” columns represent the values obtained from insects fed on sterile sugar diets, as well as those obtained

from individuals co-housed with Gfp Asaia-infected specimens of the same sex. A-C) Percentage of insects and diets colonized by Gfp-tagged Asaia. D-F) Transformed (10 + log) number of gfp gene copies www.selleckchem.com/products/z-vad-fmk.html per positive sample. Bars represent the standard error of transformed data.

Different letters (black for insect and grey for diet samples) indicate significantly different values (ANOVA, P<0.05). Table 1 Gfp Asaia concentration in S. titanus individuals and in diets.     insect diet     average titre standard deviation average titre standard deviation   donors 1.1 × 106 2.09 × 106 - - Co-feeding 24h 4.75×10 -1 8.77 × 10-1 1.84 × 102 3.16 × 102   48h 2.14 × 102 5.26 × 102 3.03 × 103 5.74 × 103   72h 2.67 × 103 8.01 × 103 2.22 × 103 3.25 × 103   96h 2.32 × 105 3.28 × 105 3.85 × 103 6.63 × 102   control Ureohydrolase 0 0 0 0 venereal transfer (male to female) 24h 3.96 × 10-2 – 0 0   48h 6.73 × 10-1 9.48 × 10-1 0 0   72h 8.06 × 100 1.32 × 101 1.14× 102 –   96h 8.96 × 102 1.79 × 103 7.27 × 102 4.57 × 101   control 0 0 0. 0 venereal transfer (female to male) 24h 0 0 0 0   48h 2.54 ×+02 4.42 × 102 1.47 101 –   72h 0 0 0 0   96h 2.53 ×+01 2.41 × 101 4.13 × 102 5.61 × 102   control 0 0 0 0 Co-housing 24h 0 0 0 0   48h 0 0 0 0   72h 0 0 0 0   96h 0 0 0 0 The concentration of Gfp Asaia in insect and diet samples as indicated by the number of gfp gene copies per positive sample. In case of insect samples, the gfp copy number was calculated per pg of insect 18Sr RNA gene, while for diets it was calculated per ng of total DNA.

M13KO7 bacteriophage functionalization Viruses are infectious age

M13KO7 bacteriophage functionalization Viruses are infectious agents that can cause disease in humans, plants, and animals; antibodies are typically used in immunoassays to detect viruses in biological

samples. The M13KO7 bacterial virus was used as a model system to determine if the large (approximately 2 μm in length; 16,400 kDa) M13KO7 could be directly bound to and detected on the PSi BSW/BSSW sensor surface. The M13KO7 bacteriophage is a low-cost, readily available, nonhazardous E. coli bacterial virus that can be readily detected using commercially available antibodies selleck products [18, 19]. The virus was covalently cross-linked to the PSi surface via APTES and GA linkers. APTES was attached find more as described

above. GA is a homobifunctional cross-linker that can bind to and covalently link molecules through their free amines. A 2.5% GA in phosphate buffered saline (PBS) buffer solution was used to cross-link the APTES free amines on the sensor surface to the free amines on M13KO7 suspended in solution on the sensor surface. After a 30-min GA incubation step, a 1% sodium cyanoborohydride (Sigma-Aldrich, St. Louis, MO, USA) in PBS buffer solution was applied, followed by a 30-min incubation step to stabilize the Schiff base bonds formed during GA cross-linking [20]. The M13KO7 (0.32 mg/ml carbonate/bicarbonate buffer, pH ~ 10) was diluted to a final concentration of 32 μg/ml in PBS buffer (final pH ~ 9.5) and applied to the sensor surface for 20 min at room temperature. The device was thoroughly rinsed with DI water. Figure 2b shows a top view SEM image of the M13KO7 bacteriophage immobilized on the PSi surface. Coulombic interactions prevent a uniform self-assembled monolayer due to the negatively charged nature of the virus. Results and discussion A resonance condition is distinctly excited when the effective index of a BSW or BSSW mode is matched by the coupling conditions of either a prism or diffraction grating. Prism coupling is compatible with existing

surface plasmon resonance biosensing instrumentation. Grating coupling allows for more compact devices, which could be Thiamet G used for point of care diagnostics with microfluidics integration [21]. The BSW mode is confined by the band gap created by the Bragg mirror and by total internal reflection near the surface. Similarly, by reducing the optical thickness of one or more layers within the multilayer through the introduction of a step or gradient refractive index profile, BSSW modes with different effective indices can be supported within the multilayer. The implementation of a single step to break the periodicity of the Bragg mirror refractive index profile shifts the band edge of the Bragg mirror and gives rise to a single BSSW mode confined within the corresponding layer with reduced optical thickness.

Chem , 79:6641–6649 Skelley, A M , Scherer, J R , Aubrey, A D

Chem., 79:6641–6649. Skelley, A. M., Scherer, J. R., Aubrey, A. D., Grover, W. H., Ivester, R. H. C., Ehrenfreund, P., Grunthaner, F. J., Bada, J. L., Mathies, R. A. (2005), Development and evaluation of a microdevice for amino acid biomarker detection

see more and analysis on Mars, Proc. Natl. Acad. Sci. U. S. A., 102:1041–1046. E-mail: dangergregoire@yahoo.​fr Testing the Lithopanspermia Theory in the Foton-M3 Mission: Simulation of Interplanetary Transfer and Re-entry Process of Epi- and Endolithic Microbial Communities with the Lithopanspermia Experiment R. de la Torre1, L.G. Sancho2, G. Horneck3, P. Rettberg3, C. Ascaso4, A. de los Ríos4, J. Wierzchos5, J.P. de Vera6, S. Ott6, C. Cockell7, K. Olsson7, J.M. Frías1, R. Demets8 1INTA (Spanish Aerospace Research Establishment); 2UCM (Univ. Complutense Madrid); 3DLR (German Aerospace Research Establishment); 4CSIC (Scientific Research Council); 5UL (Univ. Lérida); 6HHU (Heinrich-Heine Univ.); 7OU (Open Univ.); 8ESA (European Space Agency) PLX3397 price The objective

of this experiment was to test experimentally the hypothesis of lithopanspermia, which supports interplanetary transfer of rock inhabiting life by means of meteorites: microorganisms have to survive (1) the impact ejection process from the planet of origin; (2) travelling through space; (3) capture and landing on another planet. In the experiment “Lithopanspermia” on board of the FOTON-M3 satellite (14.09.07) steps 2 and 3 of this scenario have been experimentally tested. We have selected as test systems for step 2 the bipolar epilithic lichen species Rhizocarpon geographicum and Xanthoria elegans on their natural

rock substrate, as well as their fruiting bodies (reproduction structures), the endolithic microbial communities from the Atacama Desert with the cyanobacteria Chroococcidiopsis, the epilithic microbial communities from cliffs in the south-east of the UK with cyanobacterial akinetes of Anabaena, and the vagrant lichen species Aspicilia fruticulosa. Before exposure to outer real space conditions within the BIOPAN-6 facility of ESA, preparatory space simulation studies (UV solar spectrum radiation fantofarone and vacuum 10−2 Pa) were performed at the Spasolab-Laboratory of INTA (March–April 2007), to demonstrate the suitability of those lichen species. After flight (10 days exposure to harsh space conditions in low Earth orbit at about 300 km altitude) and recovery, the survival capacity of the microbial communities has been assayed. First analyses have confirmed a fast recovery of the biological activity (chlorophyll a-fluorescence) of the lichen (epilithic and vagrant lichen), similar as the pre-flight activity, comparative to the high survival rates observed in the experiment Lichens onboard of the Foton-M2 mission (de la Torre et al. 2007; Sancho et al., 2007).

Physiol Rev 2012, 92:689–737 PubMedCrossRef

9 Levy DE, M

Physiol Rev 2012, 92:689–737.PubMedCrossRef

9. Levy DE, Mari IJ, Durbin JE: Induction and function of type I and III interferon in response to viral infection. Curr Opin Virol 2011, 1:476–486.PubMedCentralPubMedCrossRef 10. Aouadi M, Binetruy click here B, Caron L, Le Marchand-Brustel Y, Bost F: Role of MAPKs in development and differentiation: lessons from knockout mice. Biochimie 2006, 88:1091–1098.PubMedCrossRef 11. Arthur JS, Ley SC: Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 2013, 13:679–692.PubMedCrossRef 12. Peti W, Page R: Molecular basis of MAP kinase regulation. Protein Sci 2013, 22:1698–1710.PubMedCrossRef 13. Gong J, Shen XH, Chen C, Qiu H, Yang RG: Down-regulation of HIV-1 infection by inhibition of the MAPK signaling pathway. Virol Sin 2011, 26:114–122.PubMedCrossRef 14. Steer SA, Moran JM, Christmann BS, Maggi LB Jr, Corbett JA: Role of MAPK in the regulation of double-stranded RNA- and encephalomyocarditis virus-induced cyclooxygenase-2 expression by macrophages. J Immunol 2006, 177:3413–3420.PubMedCrossRef 15. Si X, Luo H, Morgan A, Zhang J, Wong J, Yuan J, Esfandiarei M, Gao G, Cheung C, McManus BM: Stress-activated

protein kinases are involved in coxsackievirus B3 viral progeny release. J Virol 2005, 79:13875–13881.PubMedCentralPubMedCrossRef 16. Spaziani A, Alisi A, Sanna D, Balsano C: Role Ipatasertib order of p38 MAPK and RNA-dependent protein kinase (PKR) in hepatitis C virus core-dependent nuclear delocalization of cyclin B1. J Biol Chem 2006, 281:10983–10989.PubMedCrossRef 17. Gillis PA, Okagaki LH, Rice SA: Herpes simplex virus type 1 ICP27 induces p38 mitogen-activated protein kinase signaling selleck and apoptosis in HeLa cells. J Virol 2009, 83:1767–1777.PubMedCentralPubMedCrossRef 18. Mizutani T, Fukushi S, Saijo M, Kurane I, Morikawa S: JNK and PI3k/Akt signaling pathways are required for establishing

persistent SARS-CoV infection in Vero E6 cells. Biochim Biophys Acta 2005, 1741:4–10.PubMedCrossRef 19. Garg R, Shrivastava P, van Drunen Littel-van den Hurk S: The role of dendritic cells in innate and adaptive immunity to respiratory syncytial virus, and implications for vaccine development. Expert Rev Vaccines 2012, 11:1441–1457.PubMedCrossRef 20. Han Q, Zhang C, Zhang J, Tian Z: The role of innate immunity in HBV infection. Semin Immunopathol 2013, 35:23–38.PubMedCrossRef 21. Iwasaki A: Innate immune recognition of HIV-1. Immunity 2012, 37:389–398.PubMedCentralPubMedCrossRef 22. Shi W, Hou X, Li X, Peng H, Shi M, Jiang Q, Liu X, Ji Y, Yao Y, He C, Lei X: Differential gene expressions of the MAPK signaling pathway in enterovirus 71-infected rhabdomyosarcoma cells. Braz J Infect Dis 2013, 17:410–417.PubMedCrossRef 23. Wang B, Zhang H, Zhu M, Luo Z, Peng Y: MEK1-ERKs signal cascade is required for the replication of Enterovirus 71 (EV71). Antiviral Res 2012, 93:110–117.PubMedCrossRef 24.

diphtheriae were not only able to adhere to laryngeal HEp-2 cells

diphtheriae were not only able to adhere to laryngeal HEp-2 cells, but also enter these cells and survive after internalization. Similar p38 MAP Kinase pathway observations were made for non-toxigenic strains [9] showing that also pharyngeal Detroit 562 cells can be invaded by C. diphtheriae. In this study, living intracellular bacteria were detected up to 48 h after infection. While host cell receptors

and invasion-associated proteins of the pathogen are still unknown, bacterial adhesion factors have been recently at least partially characterized on the molecular level. C. diphtheriae is able to assemble three distinct pili on its surface. Mutant analyses showed that the SpaA-type pilus is sufficient for adhesion to pharynx cells, shaft proteins are not crucial for pathogen-host interaction, while adherence to pharyngeal cells is greatly diminished when minor pili proteins SpaB and SpaC are lacking [10]. The results obtained in this study also indicated the existence of other

proteins besides pili subunits involved in adhesion to larynx, pharynx, and lung epithelial cells, since a total loss of attachment to pharyngeal cells due to mutagenesis Seliciclib of pili- and sortase-encoding genes could not be observed and attachment to lung or larynx cells was less affected by the mutations. This is in line with a number of studies suggesting the multi-factorial mechanism of adhesion (reviewed in [11]). Furthermore, Hirata and co-workers [12] described two distinct patterns of adherence to HEp-2 cells, a localized and a diffuse form, an observation that hint also to the existence of several adhesion

factors. This idea is in accordance with the situation in other bacteria such as Salmonella enterica where a high number of different factors are crucial for pathogenesis [13]. The involvement of different C. diphtheriae proteins to adherence to distinct cell types is further supported by work on adhesion to human erythrocytes, showing that non-fimbrial surface proteins 67p and 72p, which were up to now only Tangeritin characterized by their mass, are involved in this process [14]. Interestingly, besides strain-specific differences in adherences (see references cited above), also growth-dependent effects were observed. In a study using two toxigenic C. diphtheriae strains and erythrocytes as well as HEp-2 cells, de Oliveira Moreira and co-workers [15] showed an effect of iron supply on hemagglutination and lectin binding properties of the microorganisms. Also in this study, strain-specific differences in adherence were detected. While pathogen factors responsible for adhesion are at least partially known, the molecular background of invasion is more or less unclear. Since we were interested in this process, we started a functional genetics approach to identify proteins involved in invasion, based on a recently published work presenting a comprehensive analysis of proteins secreted by C. diphtheriae [16].

Appl Phys Lett 2003, 83:1420–1422 CrossRef 8 Ye C, Bando

Appl Phys Lett 2003, 83:1420–1422.CrossRef 8. Ye C, Bando Venetoclax cell line Y, Fang X, Shen G, Golberg D: Enhanced field emission performance of ZnO nanorods by two alternative approaches. J Phys Chem C 2007, 111:12673–12676.CrossRef 9. Walavalkar SS, Hofmann CE, Homyk AP, Henry MD, Atwater HA, Scherer A: Tunable visible and near-IR emission from sub-10 nm etched single-crystal Si nanopillars. Nano Lett 2010, 10:4423–4428.CrossRef 10. Chong SK, Goh BT, Wong YY, Nguyen HQ, Do TH,

Ahmad I, Aspanut Z, Muhamad MR, Dee CF, Rahman SA: Structural and photoluminescence investigation on the hot-wire assisted plasma enhanced chemical vapor deposition growth silicon nanowires. J Lumin 2012, 132:1345–1352.CrossRef 11. Xu N, Cui Y, Hu Z, Yu W, Sun J, Xu N, Wu J:

Photoluminescence and low-threshold lasing of ZnO nanorod arrays. Opt Express 2012, 20:14857–14863.CrossRef 12. Shan W, Walukiewicz W, Ager IIIJW, Yu KM, Yuan HB, Xin HP, Cantwell G, Song JJ: Nature of room-temperature photoluminescence in ZnO. Appl Phys Lett 2005, 86:191911.CrossRef 13. He H, Yang Q, learn more Liu C, Sun L, Ye Z: Size-dependent surface effects on the photoluminescence in ZnO nanorods. J Phys Chem C 2011, 115:58–64.CrossRef 14. Liu X, Wu XH, Cao H, Chang RPH: Growth mechansim and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J Appl Phys 2005, 95:3141–3147.CrossRef 15. Tam KH, Cheung CK, Leung YH, Djurisic AB, Ling CC, Beling CD, Fung S, Kwok WM, Chan WK, Phillips DL, Ding L, Ge WK: Defects in ZnO nanorods prepared by hydrothermal method. J Phys Chem B 2006, 110:20865–20871.CrossRef 16. Lin B, Fu Z, Jia Y:

Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl Phys Lett 2011, 79:943–945.CrossRef 17. Sun L, He H, Liu C, Lu Y, Ye Z: Controllable growth and optical properties of ZnO nanostructures on Si nanowire arrays. Cryst Eng Comm 2011, 13:2439–2444.CrossRef 18. Cheng C, Wang TL, Feng L, Li W, Ho KM, Loy MMT, Fung KK, Wang N: Vertically aligned ZnO/amorphous-Si core–shell heterostructured nanowire arrays. Nanotechnology 2010, 21:475703.CrossRef 19. Panigrahi S, Basak Sucrase D: ZnO–SiO2 core–shell nanorod composite: microstructure, emission and photoconductivity properties. Chem Phys Lett 2011, 511:91–96.CrossRef 20. Chang YM, Liu MC, Kao PH, Lin CM, Lee HY, Juang JY: Field emission in vertically aligned ZnO/Si-nanopillars with ultra low turn-on field. ACS Appl Mater Interfaces 2012, 4:1411–1416.CrossRef 21. Kale VS, Prabhakar RR, Pramana SS, Rao M, Sow CH, Jinesh KB, Mhaisalkar SG: Enhanced electron field emission properties of high aspect ratio silicon nanowire-zinc oxide core-shell arrays. Phys Chem Chem Phys 2012, 14:4614–4619.CrossRef 22. Xu HJ, Chan YF, Su L, Li DY, Sun XM: Enhanced field emission from ZnO nanowires grown on a silicon nanoporous pillar array. J Appl Phys 2010, 108:114301.CrossRef 23.