33% later apoptosis. The treatment with etoposide led to 13.41% early apoptosis
and 7.80% later apoptosis (Figure 8b). The results clearly reveal that the early apoptosis increased to 42.72% and later apoptosis increased to 9.90% (Figure 8c) when the cells were treated with ECCNSs. It is now well established that etoposide-induced cleavage of DNA by topoisomerase II can mediate the formation of chromosomal translocation breakpoints, leading to the expression of oncogenic factors responsible [44]. Etoposide can cause apoptosis cascade in gastric cancer cells by coupling DNA damage to p53 phosphorylation through the action of DNA-dependent protein kinase [45]. The percentage of both early apoptosis and later apoptosis in the ECCNSs-treated group remarkably increased compared click here with free etoposide alone and untreated control, which indicated that ECCNSs were able to accelerate the apoptosis processes of tumor cells. The result also revealed that etoposide entrapped in CCNSs could enhance the efficient antitumor effect. Figure 8 FACS analysis of VX770 SGC-7901 cells stained with Annexin V- FITC and PI. (a) Cells did not treat with any agents as blank control, (b) cells apoptosis induced by VP-16, (c) cells treated with the ECCNSs. In all panels, LR represents early apoptosis and UR represents late apoptosis. The CLSM image of the etoposide/ECCNSs is shown in Figure 9.
The high therapeutic SRT2104 price effect by ECCNSs was investigated by the uptake behavior in SGC-7901 cells. Thus, the effective therapy may result from the enhanced intracellular delivery, the pH-sensitive release, and protection of etoposide by ECCNSs. Etoposide (rows a, b, c) and ECCNSs (rows d, e, f) passed through the cell membrane of SGC-7901 cells and assembled in nucleus at the predetermined point of 1, 2, and 4 h. These results demonstrated that cellular uptake of SGC-7901
cell was time-dependent, and the efficient cellular uptake of ECCNSs was higher than that of the free etoposide. From the CLSM image, it could also be seen that the CCNS carriers could aggregate around the nucleus (blue fluorescence) and even directly intrude into the nucleus. Figure 9 Confocal laser scanning microscopy images of the etoposide. (Rows a, b, and c) and ECCNSs (rows d, e, f) on SGC-7901 cells. At the predetermined point of 1, 2, and 4 h. In each case, 1, 2, and 3 indicate DAPI, FITC, nearly and Merge, respectively. The scale bar represents 25 μm. Kinetic assessment of ECCNSs (Figure 10b, c, d) uptake and void etoposide (Figure 10f, g, h) in SGC-7901 cell was conducted by plotting the fluorescence peak of each sample against the different incubation times of 1 h (b, f), 2 h (c, g), and 4 h (d, h). The number of events with high intensity for 30 μg/mL etoposide increased when the incubation time continued to 4 h, pretending its uptake into cells. At the same time, etoposide did not show any significant change in fluorescence intensity compared with ECCNSs.