Other

systemic errors can influence the results, includin

Other

systemic errors can influence the results, including estimates of sizes of nuclei with irregular shapes, such as those characteristic of Kupffer cells. The method of Abercrombie [33] is not as powerful as more modern stereological techniques, but was chosen because we did not have the sequential sections necessary for strict stereological approaches. Numbers of Kupffer cells, relative to numbers of putative hepatocytes, appear low early in development, compared to the adult state [22]. This may seem surprising in light of the suggested phagocytic role for Kupffer cells during the early phase of hemotopoesis in the liver. Numbers of Kupffer cells of course relies upon the validity of F4/80 immunoreactivity. Whatever the function

(currently not Selleck Ro 61-8048 well understood) of the F4/80 antigen, it may have different distributions and antigenicity in the developing as compared with the mature liver. Previous studies [34, 35] have demonstrated that Kupffer cells can be identified even in the fetal liver, by CX5461 their phagocytic ability and expression of their F4/80 immunoeactivity. Further, hepatocytes can be identified by a variety of transcription factors and proteins, including albumin [[35–37]]. The spatial distributions of F4/80 positive cells and of the 0.2 μm diameter microsphere containing cells seen in developing mouse liver are similar to distributions of those same markers seen in the adult. Liver

tissue collected from animals from 15 to 24 days of age appeared indistinguishable from that of adults, as regards the distribution and apparent intensity of F4/80 or microsphere labelling. Microsphere labelling was PRKD3 evident even at the youngest ages studied (P0 to P3), as was immunoreactivity to the F4/80 antibody and, as in the adult, these two markers were largely co-localized in the same cells. At the fine structural level [21], F4/80 immunoreactivity appears associated with the plasmalemmae of Kupffer cells. While the F4/80 antibody is commonly used as a marker for macrophages throughout the body, the cellular Selleck SBI-0206965 function of the antigen itself is not known. Morphological differences are apparent between F4/80 positive cells taken from early postnatal liver tissue and those taken from mature animals. Mature Kupffer cells are morphologically complex, with extensive dendritic-like processes. In the early postnatal period, the dendritic processes appear less extensive, although longer and broader processes are common by P11. Whether these apparent morphological differences are due to real structural differences of the cells at different ages or due to differences in distribution of the F4/80 identified antigen is not clear at this time.

It is obvious that the hydrothermal process provides an environme

It is obvious that the hydrothermal process provides an environment-friendly and low-cost route for producing pure kesterite CZTS, as compared with the solvothermal method with DMF as the solvent. Figure 1 XRD patterns of the samples obtained under different

amounts of EDTA. Mole ratio of three metal ions The stoichiometric control of quaternary compounds is complicated by the tendency of forming a plurality of compositional phases, due to the difference in reactivity of the cationic precursors. Consequently, the mole ratio of the three cationic precursors Cilengitide chemical structure in the reaction KPT-8602 system should have an important effect on the phase composition of the obtained samples. Figure 2 shows the PXRD patterns of the samples synthesized buy INK1197 at 180°C for 16 h from the reaction system containing 2 mmol of EDTA at different mole ratios of the three metal ions. At Cu/Zn/Sn = 2:1:1, corresponding to the stoichiometric ratio of CZTS, the obtained sample shows a similar XRD pattern to the one prepared from the reaction system containing no EDTA (Figure 1),

implying that it has a mixed phase of kesterite and wurtzite. Besides, a weak impurity peak located at 31.7° appears. As the amount of ZnCl2 in the reaction system is doubled, and thus Cu/Zn/Sn is accordingly changed from 2:1:1 to 2:2:1, the obtained sample can be identified as kesterite CZTS in high purity and good crystallinity. Note that at Cu/Zn/Sn = 2:3:1, the obtained sample exhibits several diffraction peaks of kesterite CZTS, together with one weak impurity peak located at 31.8°. These results indicate that the mole ratio of the three cationic precursors influences the phase composition of the obtained product. An excessive dose of ZnCl2 (double the stoichiometric ratio of Zn in CZTS) in the reaction Tryptophan synthase system favors the production of pure kesterite CZTS. Figure 2 XRD patterns of the samples obtained at different Cu/Zn/Sn/S mole ratios. Effect of hydrothermal temperature With the amount

of EDTA fixed at 2 mmol and Cu/Zn/Sn set at 2:2:1, the hydrothermal synthesis was conducted at different temperatures for 16 h. Figure 3 displays the PXRD patterns of the samples prepared at 170°C, 180°C, and 190°C. All the obtained samples show the seven diffraction peaks located 28.7°, 33.0°, 47.6°, 56.4°, 59.2°, 69.5°, and 76.7°, which are ascribed to (112), (200), (220), (312), (224), (008), and (332) planes of kesterite CZTS, respectively. However, the two samples prepared at 170°C and 190°C exhibit one weak impurity peak located at 31.8°. It is suggested that kesterite CZTS can be synthesized at the hydrothermal temperatures ranging between 170°C and 190°C from the reaction system containing 2 mmol of EDTA at 2:2:1 of Cu/Zn/Sn. The suitable temperature for producing pure kesterite CZTS should be around 180°C. Figure 3 XRD patterns of the samples obtained at different hydrothermal temperatures.

The primers, which were designed to flank the cloning site in vec

The primers, which were designed to flank the cloning site in vector pSRP18/0 using the sequences of E. coli MG1655 [68] and pBR322 [69], were purchased from Medprobe or Biomers. Bioinformatics analysis of the cloned S. aureus sequences The sequences obtained from the insertions of the Ftp library were

compared against the genome and gene sequences of S. aureus NCTC 8325 using basic local alignment mTOR inhibitor search tool, BLASTN [27]. By accepting pairwise alignments with at least 95% sequence identity and of length at least 30 nt, a hit was recorded for 1446 and 1538 query sequences in the first and second sequence batch, respectively. All these sequences matched a single genomic region on the genome sequence. In the gene search, query sequences were required to share at least 95% identity and at least 95 nt continuous alignment against the CHIR-99021 supplier subject sequence. This search resulted in hits for 1325 and 1401 query sequences that showed a trustworthy match against 1695 and 1747 subject sequences. To have a one-to-one correspondence between queries and subjects, we only accepted the gene closest to the flag sequence end of the query sequence. Prediction

of amino acid composition and molecular mass on the basis on deduced protein sequences of the library clones was done using ProtParam-tool [70] and analyses of signal sequences were carried out using SignalP and LipoP [71, 72]. Gene sequences were also re-annotated by converting them into amino acid

sequences, performing a homology search using BLASTP [27] and choosing the most representative descriptions find more for them with Blannotator [73]. Accession numbers E. coli MG1655, GenBank: U00096 and NCBI: NC_000913; pBR322, GenBank: J01749; S. aureus subsp. aureus NCTC 8325, GenBank: CP000253 and NCBI: NC_007795; fnbA, GenBank: J04151. Acknowledgements We thank Raili Lameranta, triclocarban Heini Flinck, Sinikka Latvala, Lotta Siira, Laura Teirilä and Maiju Laaksonen for technical assistance, Lars Paulin for assistance in DNA sequencing, Patrik Koskinen for preparation of Figure 2, and Katariina Majander for valuable comments regarding the manuscript. This work was supported by the Academy of Finland (in the frame of the ERA-NET PathoGenoMics grant number 118982 and General research grant 123900) and the European Network of Excellence in EuroPathoGenomics EPG (number CEE LSHB-CT-2005-512061). Electronic supplementary material Additional file 1: “”Table S1″” shows the list of gene products found by DNA sequencing and bioinformatics of the Ftp-library. Examples of known adhesive surface proteins and adhesive polypeptides described in the current report are shown in boldface. The abbreviations used as clone and polypeptide names in the current report are shown in parenthesis. (PDF 82 KB) References 1.

It is evident that the rise of the absorption edge near the band

It is evident that the rise of the absorption edge near the band edge for the pure ZnO nanorods (sample S1) increased gradually, while it becomes sharper for the Cu-doped ZnO nanorods (samples S2 to S5), indicating the presence of localized states within the bandgap. The undoped ZnO nanorods (sample S1)

showed lower transmittance (approximately 70%) compared to the Cu-doped ZnO nanorods. This could be attributed to the scattering either from the unfilled inter-columnar volume and voids or from the inclined nanorods. Using Selleckchem KU55933 Cu(CH3COO)2 as the Cu source (samples S2 and S3), the total transmittance increased, reaching approximately 80%, and was found to be independent on the amount of Cu dopants. Comparatively, using Cu(NO3)2 as the Cu precursor (samples S4 and S5), the total transmittance increased further, reaching approximately 90%. Lin et al. [37] related the presence of oxygen vacancies to the transmittance ratio, where lower transmittance indicates that there are Ilomastat in vitro more oxygen vacancies and vice versa.

However, in the study reported here, we can attribute the reduction in the total transmittance to the increase in the rod diameter for the samples doped with Cu(CH3COO)2. It can be seen that at the absorption edge for Cu-doped ZnO nanorods, the Belnacasan mw slight blueshift indicates that the bandgap was tuned by the incorporation of the Cu dopants. It may be observed that there are obvious interference fluctuations in the transmission spectra when Cu(CH3COO)2 was used as the Cu precursor (samples S2 and S3). These fluctuations can be attributed to the presence of scattering centers [36]. Figure 6 Total transmittance spectra of undoped and the Cu-doped ZnO nanorods. Conclusions In conclusion, we explored the effect of Cu precursors (Cu(CH3COO)2 and Cu(NO3)2) and concentration on the structural, morphological, and optical properties of the hydrothermally synthesized Cu-doped

ZnO nanorods. The XRD results revealed that the slight changes in the lattice parameters have occurred due to the substitution of Zn2+ by Cu2+ and the formation of Baf-A1 datasheet defect complexes. The nanorods doped with Cu(NO3)2 had less crystallinity than the nanorods doped with Cu(CH3COO)2, where the maximum compressive lattice strain (−0.423%) was obtained when 2 at.% of Cu was added from Cu(NO3)2. From the SEM studies, Cu(CH3COO)2 was found to be an effective precursor for the formation of Cu-doped ZnO nanorods with large diameter. Conversely, Cu-doped ZnO nanorods with a small diameter (approximately 120 nm when 2 at.% was added) can be obtained when Cu(NO3)2 is used as a Cu precursor due to the lack of hydrolysis process. UV and green emission peaks at 378 and 544 nm were observed for all samples and are attributed to the near-band edge UV emission and the defect-related emission, respectively.

The gene cluster for agmatine catabolism lies

immediately

The gene cluster for agmatine catabolism lies

immediately downstream of the tdc operon, and its genes encode a putrescine transcarbamylase, an agmatine/putrescine exchanger, two putative agmatine deiminases (one of which, aguA1, encodes a catalytically active enzyme), a carbamate kinase and a putative transcriptional regulator (AguR). The presence of a functional substrate/product transmembrane exchanger in both systems suggests that the pathways may be involved in pH homeostasis. In this study we have subjected L. brevis IOEB 9809 to an in vitro system, which partially mimics physical stresses in the human gastrointestinal Cilengitide molecular weight tract, to determine if BA synthesis occurs. Transcriptional analysis was used to detect

any enhancement of tyrosine decarboxylase (tyrDC) and agmatine deiminase (aguA1) gene expression. Furthermore, the adhesion of the IOEB 9809 strain to human epithelial intestinal cells was investigated and BA production in bacteria-human cells co-cultures was measured. Protein Tyrosine Kinase inhibitor Results and discussion Behaviour of L. brevis IOEB 9809 under simulated upper digestive tract conditions To test for BA production and the influence of active BA biosynthetic pathways on bacterial survival IOEB KU55933 9809 was grown to approximately 8 × 108 CFU mL-1 in MRS medium in the absence or presence of 10 mM tyrosine or 4.38 mM agmatine sulphate or both (these concentrations were previously found to be optimal for BA production; data not shown). Then, the cultures were subjected to conditions that simulated some of the more important conditions of the human upper digestive tract, including treatment with lysozyme at pH 6.5 (simulating saliva) and at a range of low pH in the presence of pepsin (simulating gastric stress). Acidity within the human

stomach during digestion is in the range pH 1.3-3.5 which corresponds to the range of maximum activity of pepsin [20]. However, during food ingestion, and depending on the food matrix, bacteria can be exposed to a broader pH gradient. Therefore, during gastric treatment the bacteria were exposed to a decreasing 4��8C range of pH from 5.0 to 1.8, which we have previously used for testing of probiotic and lactic acid bacteria [16, 21–23]. BA production was quantified by reverse-phase HPLC of culture supernatants, and cell viability was assessed by plate counting. Under all conditions, production of tyramine and putrescine was observed in the presence of the corresponding precursor (Table 1). The bacterium was sensitive to all conditions tested (Figure 1). The saliva simulation reduced the survival of IOEB 9809 to 34% in the control samples. A higher survival (62%) was observed in the presence of tyrosine, which was enhanced (69%) when agmatine was included in the assay. This survival-aiding influence of tyrosine was not previously observed with the dairy tyramine-producer E.

This film was

This film was soaked into a TiCl4 (20 mM in water) solution for 12 h. It was then washed with deionized water and ethanol, dried with air, and sintered again at 450°C for 30 min. In situ solvothermal growth of CuInS2 nanocrystals CIS #GSK2118436 clinical trial randurls[1|1|,|CHEM1|]# layer was in situ grown on nanoporous TiO2 films by a solvothermal process. In a typical process, thioacetamide (0.24 mmol, 0.02 M) was

added into a 12 mL ethanol solution containing InCl3 · 4H2O (0.01 M) and CuSO4 · 5H2O (0.01 M) under magnetic stirring, until a clear solution was formed. The resulting solution was transferred into a Teflon-lined stainless steel autoclave with 30-mL capacity. Subsequently, FTO/compact-TiO2/nanoporous-TiO2 film as the substrate was vertically immersed into the solution. Lastly, the autoclave was kept in a fan-forced

oven at 160°C for 12 Selleck Nirogacestat h. After air-cooling to room temperature, CIS film on non-conductive glass side was scraped off, while CIS film on nanoporous TiO2 film side was washed with deionized water and absolute ethanol successively, and dried in air. For comparison, the effects of InCl3 · 4H2O concentrations (0.01, 0.03, 0.1 M) on the morphologies CIS layer were investigated. The concentration ratio of InCl3 · 4H2O, CuSO4 · 5H2O, and thioacetamide was maintained constant (1:1:2) for all the cases. Fabrication of all-solid HSC The P3HT solution (10 mg/mL in 1,2-dichlorobenzene) was spin-coated onto TiO2/CIS with 3,000 rpm for 60 s. Then, in order to improve the contact between P3HT and gold, a PEDOT:PSS solution diluted with two volumes of methanol was introduced onto TiO2/CIS/P3HT layer by spin-coating at 2,000 rpm for 30 s [32]. In order to form a hybrid heterojunction,

the TiO2/CIS/P3HT/PEDOT:PSS layer was then annealed at 90°C for 30 min in a vacuum oven. Gold layer as the back contact was prepared by magnetron sputtering with a metal mask, giving an active area of 16 mm2 for each device. The resulting HSC has a structure of FTO/compact-TiO2/nanoporous-TiO2/CIS/P3HT/PEDOT:PSS/Au. Characterization and photoelectrical measurements The sizes and morphologies of the sample were investigated by field emission scanning electron microscopy Etofibrate (FE-SEM; S-4800, Hitachi, Chiyoda-ku, Japan). During SEM measurement, energy dispersive spectroscopy (EDS; Quantax 400, Bruker AXS, Inc., Madison, WI, USA) line scan was also performed to locate and determine the distribution of different layer in the composite film. The X-ray diffraction (XRD; D/max-g B, Rigaku, Shibuya-ku, Japan) measurement was carried out using a Cu Kα radiation source (λ = 1.5418 Å). An ultraviolet/visible (UV-vis) spectrophotometer (U-3010 spectrophotometer, Hitachi, Chiyoda-ku, Japan) was used to carry out the optical measurements.

Organic matter in the ocean is depleted in 13C by ~20‰ relative t

Organic matter in the ocean is depleted in 13C by ~20‰ relative to the (arbitrarily chosen) standard, carbon from fossil (extinct) SCH727965 solubility dmso marine Belemnite

carbonates in the Pee Dee formation in South Carolina (the PDB standard). By definition, the isotopic value of the standard relative to itself is 0‰ . Mantel carbon, emitted from volcanoes, has an isotopic value of ca. −5‰. Hence, to obtain such a mantel carbon isotopic value requires mixing 4 mass equivalents of carbonate with one mass equivalent of organic carbon. This basic notion provides the basis for estimating the oxidation state of the planetary surface (from a practical purpose, the atmosphere, as a very small fraction of the free Selleck Pictilisib oxygen is dissolved in the ocean or is found in crustal rocks). The notional concept is that as more organic carbon is buried oxygen concentrations in the atmosphere increase. On geological time scales, the burial of organic carbon removes the lighter isotope, 12C, in the inorganic phase, from the ocean/atmosphere system, leaving behind inorganic carbon that is increasingly enriched in 13C. Hence, on

geological time scales, increased net oxidation of the Earth’s surface can quantitatively be related to increased 13C content of inorganic carbon buried in the rock record as carbonates. The geochemical record of carbon isotopes over geological time, while clearly not perfect, is extensive and clearly reveals the pattern MLN8237 datasheet of burial of reducing equivalents over the past 3.5 billion years. The results strongly suggest that organic carbon was extensively buried for 200 million years around the time of the GOE, and subsequently around 700 Ma (million years ago), and 350 Ma. Burial of organic matter on geological time scales is not trivial. Although until approximately 400 Ma, all primary production

on Earth was confined to aquatic ecosystems (by far the oceans), and the residence time of marine sediments is relatively short—on order of ca. 200–300 million years. The sediments are largely subducted into the upper mantel where they are heated and the resulting gases emitted via volcanism back to the atmosphere. Thymidylate synthase Indeed on geological time scales this is the source of CO2 in Earth’s atmosphere. This so-called Wilson cycle [named after the late Canadian geophysicist, Tuozo Wilson (1966)] constrains oxidation of the atmosphere to small levels of oxygen, on order of ca. 1% PAL. To escape this constraint, organic carbon must be removed from the cycle. One mechanism is the uplift of marine sediments onto continental cratons, where it can be stored for billions of years. Indeed, subduction of marine crust along active continental margins leads to the formation of stable sedimentary rocks (as shales and mudstones) uplifted onto land and hence removed from the Wilson cycle. This process is driven by plate tectonics. Earth is the only planet in our solar system with active plate tectonics.

Cases who received anti-EGFR TKI treatment were retrieved Anti-E

Cases who received anti-EGFR TKI treatment were retrieved. Anti-EGFR treatment Anti-EGFR treatment

was introduced to NSCLC patients who had clinical stage IIIB, stage IV, or recurrent disease, and a measurable indicator lesion by RECIST classification that had not been irradiated. Patients could have received any number of prior chemotherapy regimens and 3 weeks must have elapsed since prior chemotherapy. Eligible patients had Karnofsky performance status (PS) ≥60% or ECOG PS ≥2, sufficient bone marrow function and adequate liver and kidney function. Patients with brain metastases stable for >3 months were also candidates for such treatment. All patients’ signed informed consent before starting treatment. Patients see more must have been treated with either single agent gefitinib or erlotinib. Availability of paraffin-embedded tissue sample at diagnosis was also classified as an entry criterion for this study. All patients signed informed consent for the use of biological materials for research purposes. The study was conducted according CX-6258 concentration to the Declaration of Helsinki and the guidelines for Good Clinical Practice. The bioethics Committee of Metropolitan

Hospital approved the study and the collection of biological material. Patient evaluation and treatment All patients received gefitinib at 250 mg per day orally or erlotinib at 150 mg orally. Gefitinib was supplied free of charge by AstraZeneca as part of an international compassionate use program. Since 2005 erlotinib was nationally approved for the treatment of NSCLC irrespective of EGFR mutational status. Treatment was administered daily with a treatment cycle constituting 28 days. Treatment was discontinued for up to 7 days for grade 3–4 toxicity, until resolution of toxicity to ≤1. For non-resolving toxicities of

more than 15 days, treatment was ceased. Treatment was continued until disease progression, serious adverse toxicity, at the decision of the treating physician, Linifanib (ABT-869) or following voluntary patient withdrawal. Patients were eligible for response evaluation after completion of >2 months treatment. Clinical data including smoking history, clinical stage, pathological diagnosis and response data for all patients was retrieved from their medical reports. Somatic mutation analyses Genomic DNA was extracted from paraffin embedded tumors obtained retrospectively from HeCOGs Tumor Repository Bank, as previously described. All paraffin blocks were examined on H&E for histological verification according to W.H.O [19]. Tumors with >75% neoplastic cell content (%NCC) were considered as eligible for analysis. For biopsies with inadequate %NCC, macro-dissection on 5 μm sections was performed to increase the content to >75%. Mutational selleck kinase inhibitor analysis for all genes was conducted as previously described [20]. The primer sequences for all reactions are available upon request. All studied exons were confirmed, for EGFR.

Antisense Nucleic Acid Drug Dev 2003, 13:1–7 PubMedCrossRef 26 E

Antisense Nucleic Acid Drug Dev 2003, 13:1–7.PubMedCrossRef 26. Elson DA, Ryan HE, Snow JW, Johnson R, Arbeit JM: Coordinate

up-regulation of hypoxia inducible factor (HIF)-1alpha and HIF-1 target genes during multi-stage epidermal carcinogenesis and wound healing. Cancer Res 2000, 60:6189–95.PubMed 27. Ryan HE, Poloni M, McNulty W, Elson D, Gassmann M, Arbeit JM, Johnson RS: Hypoxia-inducible factor-1alpha is a positive factor in solid tumor growth. Cancer Res 2000, 60:4010–5.PubMed 28. Chambers AF, Schmidt EE, MacDonald IC, Morris VL, Groom AC: Early steps in hematogenous metastasis of B16F1 melanoma cells in chick embryos studied by high-resolution intravital videomicroscopy. J Natl Cancer Inst 1992, 84:797–803.PubMedCrossRef

29. Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA: Integrin alpha v beta 3 antagonists promote tumor regression by inducing Captisol solubility dmso apoptosis of angiogenic click here blood vessels. Cell 1994, 79:1157–64.PubMedCrossRef 30. Stan AC, Radu DL, Casares S, Bona CA, Brumeanu TD: Antineoplastic efficacy of doxorubicin enzymatically assembled on galactose residues of a monoclonal antibody specific for the carcinoembryonic antigen. Cancer Res 1999, 59:115–21.PubMed 31. Chen MJ, Chiou PP, Lin P, Lin CM, Siri S, Peck K, Chen TT: Suppression of growth and cancer-induced angiogenesis of aggressive human breast cancer cells (MDA-MB-231) on the chorioallantoic membrane of developing chicken embryos by E-peptide BTK inhibitor of pro-IGF-I. J Cell Biochem 2007, 101:1316–27.PubMedCrossRef 32. Martinez-Madrid B, Donnez J, Van Eyck AS, Veiga-Lopez A, Dolmans MM, Van Langendonckt A: Chick embryo chorioallantoic membrane (CAM) model: a useful tool to study short-term transplantation of cryopreserved human ovarian tissue. Fertil Steril 2009, 91:285–92.PubMedCrossRef 33. Namikawa R, Shtivelman E: SCID-hu mice for Tau-protein kinase the study of human cancer metastasis. Cancer Chemother Pharmacol 1999, (43 Suppl):S37–41. 34. Beasley

NJ, Leek R, Alam M, Turley H, Cox GJ, Gatter K, Millard P, Fuggle S, Harris AL: Hypoxia-inducible factors HIF-1alpha and HIF-2alpha in head and neck cancer: relationship to tumor biology and treatment outcome in surgically resected patients. Cancer Res 2002, 62:2493–7.PubMed 35. Volm M, Koomagi R: Hypoxia-inducible factor (HIF-1) and its relationship to apoptosis and proliferation in lung cancer. Anticancer Res 2000, 20:1527–33.PubMed 36. Patton JF, Spigel DR, Greco FA, Liggett WH, Zubkus JD, Baskette M, Schreeder M, Woytowitz D, Nelson E, Hainsworth JD: Irinotecan (I), carboplatin (C), and radiotherapy (RT) followed by maintenance bevacizumab (B) in the treatment (tx) of limited-stage small cell lung cancer (LS-SCLC): Update of a phase II trial of the Minnie Pearl Cancer Research Network. Journal of Clinical Oncology 2006, 24:385. 37.

J Clin Invest 2004,113(9):1271–1276 PubMedCentral

J Clin Invest 2004,113(9):1271–1276.PubMedCentralPubMedCrossRef 11. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J: Hepcidin

regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004,306(5704):2090–2093.PubMedCrossRef 12. Troadec M-B, Laine F, Daniel V, Rochcongar P, Ropert M, Cabillic F, Perrin M, Morcet J, Loreal O, Olbina G, Westerman M, Nemeth E, Ganz T, Brissot P: Daily regulation of serum and urinary hepcidin is not influenced by submaximal cycling exercise in humans with normal iron metabolism. Eur J Appl Physiol 2009,106(3):435–443.PubMedCrossRef 13. Telford RD, Sly GJ, Hahn AG, Cunningham RB, Bryant C, Smith JA: Footstrike is the major cause of hemolysis during running. J Appl Physiol 2003,94(1):38–42.PubMed 14. Auersperger #click here randurls[1|1|,|CHEM1|]# I, Knap B,

Jerin A, Blagus R, Lainscak M, Skitek M, Skof B: The effects of 8 weeks of endurance running on hepcidin concentrations, inflammatory parameters, and iron status in female runners. Int J Sport Nutr Exer Metab 2012,22(1):55–63. 15. McClung JP, Karl JP, Cable SJ, Williams KW, Young AJ, Lieberman HR: Longitudinal decrements in iron status during military training in female soldiers. Brit J Nutr 2009,102(4):605–609.PubMedCrossRef 16. McClung JP, Martini S, Murphy NE, Montain SJ, Margolis LM, Thrane I, Spitz MG, Blatny J-M, Young AJ, Gundersen Y, Pasiakos SM: Effects of a 7-day military training exercise selleck chemical on inflammatory biomarkers, serum hepcidin, and iron status. Nutr J 2013, 12:141.PubMedCentralPubMedCrossRef 17. Peeling P,

Sim M, Badenhorst CE, Dawson B, Govus AD, Abbiss CR, Swinkels DW, Trinder D: Iron status and the acute post-exercise hepcidin response in athletes. PLoS One 2014. in press 18. Nieman DC, Nehlsen-Cannarella SL, Fagoaga OR, Henson DA, Utter A, Davis JM, Williams F, Butterworth DE: Influence of mode and carbohydrate on the cytokine response to heavy exertion. Med Sci Sport Exer 1998,30(5):671–678.CrossRef 19. Borg GA: Psychophysical bases of perceived exertion. Med Sci Sport Exer 1982, 14:377–381. 20. Kroot JCC, Laarakkers CM, Geurts-Moespot A, Grebenchtchikov N, Pickkers P, Van Ede A, Peters HP, Van Dongen-Lases E, Wetzels JFM, Sweep FC, Tjalsma H, Swinkels DW: Immunochemical and mass spectrometry-based serum hepcidin Bacterial neuraminidase assays for a variety of iron metabolism disorders. Clin Chem 2010,56(10):1570–1579.PubMedCrossRef 21. Van Santen S, Van Dongen‒Lases EC, De Vegt F, Laarakkers CM, Van Riel PL, Van Ede AE, Swinkels DW: Hepcidin and hemoglobin content parameters in the diagnosis of iron deficiency in rheumatoid arthritis patients with anemia. Arthritis Rheum 2011,63(12):3672–3680.PubMedCrossRef 22. Swinkels DW, Girelli D, Laarakkers C, Kroot J, Campostrini N, Kemna E, Tjalsma H: Advances in quantitative hepcidin measurements by time-of-flight mass spectrometry. PLoS One 2008, 3:e2706.PubMedCentralPubMedCrossRef 23.